
1

Excel2Csv
version 1.3

End-user manual

Andrea Santilli (andrea.santilli@istat.it)

Davide Cervini (davide.cervini@istat.it)

mailto:andrea.santilli@istat.it
mailto:davide.cervini@istat.it

2

Summary
Introduction .. 3

What Excel2Csv is .. 3

How Excel2Csv operates ... 3

Output customisation ... 3

Variable mapping .. 3

Supported formats .. 4

Future developments .. 4

Step-by-step guide .. 5

The data extraction mode ... 6

An initial raw output: observations and fine tuning ... 8

Loading and saving settings .. 10

Dimension settings: the field editor ... 11

Axis references .. 11

Field labels .. 12

Implicit constant dimensions .. 12

Field ordering .. 14

Time encoding: SDMX time mapping .. 15

Time encoding: datetime data type casting ... 17

Hiding dimensions: excluding row or column labels from the output ... 18

Customising the code extraction: The Expression Editor ... 18

Cell Attributes ... 21

The extraction of constant values from worksheet’s cells ... 24

The code list extraction mode .. 26

Final observations ... 30

3

Introduction
What Excel2Csv is
The Excel2Csv application is a software that allows users to export data from statistical tables stored

inside Excel spreadsheets to comma-separated value files (csv) that can be later interpreted by data

loading programs, such as OECD.Stat's Entry Gate or the SDMX Builder & Loader.

For this task to be accomplished, the application must receive hints about the location of the table

inside the spreadsheet and its characteristics. The information that shall be provided the application

includes the sheet number, the table boundaries, the boundaries of the axes and what cell the actual

data start from.

How Excel2Csv operates
The Excel2Csv program is designed so that it can detect empty rows and columns in a table and

eventually read merged cells as well. Dates and times can be read directly from the Excel format or a

string representing them. Should a time reference variable show non-standard values, its structure

can be mapped or casted to a valid SDMX time format.

Excel2Csv is also able to read tables representing n-dimensional data cubes or their subsets. Since data

cubes can be multidimensional and tables only have two dimensions, the resulting representation

must show one or more dimensions on each axis to show the cubes appropriately. For this reason,

Excel2Csv was made able to detect such dimensions with the user’s intervention.

Output customisation
The output csv structure is entirely user-customised. Thus, end-users decide what field separator shall

be used, what position each table dimension must occupy inside the output file and what format a file

must be encoded to. It is also possible to override both the local decimal separator and the maximum

number of decimal digits a numeric value can show, and to also set the application up so that it won’t

try to parse the data it reads, in case a table purposely shows non-numeric values. Finally, a header

containing the names of each dimension can be added to the top of the file contents as well.

Variable mapping
Apart from the time mapping capabilities of the program, end-users can finally include a variable value

code and its corresponding description into the same table cell so that Excel2Csv application can thus

validate the cell contents and extract the codes only. In this way, only the latter are reported in the

output data file. Obviously, cell contents must respect a given format.

Since tabular forms which Excel2Csv operates on often represent simplified slices (or “subsets”) of

original n-dimensional cubes they refer to, it is not unusual for a table designer to leave a few

dimensions out of the table by setting them constant and thus showing the other ones only. For this

reason, Excel2Csv is also featured with ability to let users add those constant dimensions back into a

csv layout, so that the resulting Csv can be kept compliant to the original data cube schema.

Finally, Excel2Csv is also able to remove dimensions that an end-user might want to hide from the

output csv, either because it might not report useful information, or it could just contain referential

metadata that can be stripped off a data csv file.

4

Supported formats
Excel2Csv internally uses the NPOI library to read spreadsheet files. As a result, the formats that are

currently being supported are the old Excel xls binary file and the newest xlsx one (in the 2007 zipped

OOXML archive form, not the 2003 standalone xml format). Other formats might be added later.

About the csv output formats, the application supports all the encodings also supported by the .Net

platform. Record endings are marked by the CR-LF byte sequence. In case the application reads text

written in Arabic or Hebrew, the resulting portions of the strings in the record fields shall be read right-

to-left, while the whole record itself shall be read left-to-right.

About right-to-left readable languages, only Arabic and Hebrew are currently officially supported.

Other eventual RTL languages might give unexpected results. If you’d like other RTL languages to be

officially supported, please send us a list.

Future developments
At the time being, there are plans to make Excel2Csv able to match the variable descriptions of a

dimension with the ones that can be found inside an SDMX code lists. In this way, it could be possible

to retrieve a valid variable code by just matching its description with the descriptions in the SDMX

code list. On the contrary, there are also plans to extract valid SDMX code lists and their Multilanguage

descriptions from a database file. Recently, the application has been featured with the ability to

extract multi-language code lists from an Excel file in a way similar to the data extraction process.

Finally, it is being planned to add a new feature that makes it possible to guess an SDMX Data Structure

Definition from a given table and output it to a valid SDMX-ML file.

5

Step-by-step guide
At the first run, Excel2Csv appears as follows. Please consider that there might be variations between

different versions in the way the application looks.

Figure 1: the main window at the first run

The window with an empty workspace shown in the image is a plain Multiple Document Interface

(MDI) parent, that is a window allowed to contain other windows.

From here, we can start new sessions for extracting either data or code lists by just selecting “New

data window” or “New dimension window” from the “File” menu. Should several session windows be

kept opened and maximised at the same time, the parent window shows a tab row at the top of its

workspace.

Figure 3: tab bar visible with several child

windows

Of course, the keyboard shortcuts that are usually available for MDI windows - such as ctrl + tab and

ctrl + shift + tab for cycling through the children, ctrl+f4 for closing the current child, or alt + hyphen

for showing the child system menu - are still valid on Excel2Csv.

We are now going to take a detailed look at both the operational modes of the application.

Figure 2: only one opened session; tab bar
hidden

6

The data extraction mode
In order to start a new data extraction session, we can open a new data window by either selecting

the “New data window” entry from the “File” menu or by clicking the first button on the button bar

of the main window. This is how the application will look like:

Figure 4: the data extraction window stretched enough to show all its controls

Before taking the first step, it is important to keep in mind that a spreadsheet workbook might contain

several sheets, each one containing several tables in its turn. Hence, we must give Excel2Csv the right

coordinates that identify the table we need to export in an unambiguous way.

It is thus fundamental to pass the application the following information:

1. The full path name of the spreadsheet file we want to read (obviously);

2. What sheet contains the table we want to extract;

3. What cell the table starts from;

4. What cell the table should end at;

5. The area that shall be considered as pertaining to the table axes;

6. What cell the actual data start from.

7. The full path name of the output csv file.

A B C D E F G H I

1

2

3 6 7 6 7 6 7

4

5

6

7 IT 0,4 0,9 0,3 0,9 0,1 0,6

8 ITC 0,3 0,9 0,4 1,1 n.a. n.a.

9 ITD 0,5 0,9 0,2 0,9 n.a. n.a.

10 ITE 0,1 0,8 0,5 1,1 n.a. n.a.

11 ITF 0,2 0,7 0,4 0,7 n.a. n.a.

12 ITG 0,4 1 0,1 0,9 n.a. n.a.}

1

4

J

}

13

00

2017M12 2018M1 2018M2

39

Figure 5 shows a sample table from which we can guess the necessary basic information we need for
the extraction: the beginning and the end of the table are marked by the B2 and I12 cells
respectively. The header is 4 cells tall and the side is 1 cell wide. Data starts from cell D7.

7

We need to provide both the table axis area and the data start cell either because extra unimportant

information might be reported between the axis area and the data area or because the portion of data

of our interest doesn’t start at the beginning of the data area, thus we must tell the application what

the data area boundaries are and what lines and/or rows we want to keep on considering as axes.

In Excel2Csv, point 1 is expressed by an integer value starting from 0; point 2, 3 and 5 are passed by

writing the column and the row (respectively starting by “A” and “1”) for each cell we must express;

about point 4, it is necessary to give both the height of the header and the width of the side.

Let’s take the following sample table:

Figure 6: our sample table

Our table starts from cell A3 and ends at cell T16. The height of the header takes 5 lines and the side

takes 3 columns. Finally, the actual data starts from cell E9. Let’s suppose our table is contained inside

the sheet number 0, which is the first tab that usually appears at the bottom of Excel.

So, let’s recolour our table in a less confusing way:

Figure 7: the table in figure 2 recoloured in a less confusing way

As it can be seen, the cyan-coloured area is the table side, the green one is the header, and the yellow

area represents the data area. The header contains 5 axes of the data cube the table represents, and

the side 3.

In this case we are supposed to pass Excel2Csv our information by filling the text boxes of the main

window in the following way:

8

Figure 8: a sample of the correct settings for the table in Figure 2

Both the source and the destination files can be selected by just using the file selector dialogs that are

shown by pressing the respective buttons.

Note: spreadsheet documents written in right-to-left languages, such as Arabic or Hebrew, show the

sheet labels in a reversed order. Hence, in such documents the sheet “0” is the rightmost tab and the

last tab corresponds to the leftmost one. While this fact might sound ordinary for some people,

keeping it in mind might save unaccustomed users quite a few headaches.

An initial raw output: observations and fine tuning
So far so good, we could already produce our csv file by pressing the OK button. The output csv file

shows the following contents:

Figure 9: the output file contents as shown in a text editor

9

Figure 10: finer output tuning settings

Let’s take the first written record:

[T] totale;[99] totale;[ITC] Nord-ovest;Gen-2010;[99] totale;[TOTAL] totale;[COF_PER_10] clima personale dei consumatori (numero indice

base 2010=100);[N] dati grezzi;13,7

There are a few details that are worth being noted about this record:

1. By default, Excel2Csv reports the variable values shown on the side first, then the ones on the

header and finally the observation value. We will later see how to change this order.

2. About the separators, each record field is separated by a semicolon by default. It is quite

obvious how to change this setting from the interface.

What might be less obvious is the reason why the actual data show a comma as a decimal

separator, despite its related box being empty. This is because the system we’ve been running

Excel2Csv on is localised in Italian, thus it used the Italian settings for the representation of

real numbers.

Had we run the application on a UK localised system, the value would have shown a “point”

as the decimal separator, and in such case, we would have obtained the value “13.7” instead

of “13,7”.

Of course, specifying a different decimal separator in the related box overrides this setting.

3. Another worth-noting detail is about the number of digits in the value. Since we only had one

digit in the original table and we specified a maximum amount of 2, the output file only reports

one, without adding any zeroes at the end. Please notice that when decimals get cut away,

the number is rounded instead of being truncated.

Anyway, this setting never enforces a higher precision than the one that is found in the table.

4. The output file was written in the 8-bit Unicode encoding with Byte Order Mark, as correctly

shown in the figure, but it is possible to change this setting. The multiple-choice box, located

beside the “output encoding” label, shows a list of encodings that are supported by the .Net

platform and that can be used to encode the output file.

Finally, please notice that line endings are marked the DOS/Windows way (CR-LF).

10

5. Since each dimension variable seems to show values in the form “[Code] Description” (see,

for instance, “[T] Totale” or “[N] dati grezzi”), we can tick the related “Extract codes from” box

so that the application can use codes only for writing the records.

By activating that option, the combo box at the side is enabled but, since it defaults to a

“[Code] description” type of expression, we can keep that setting as it is. We will later see how

to fine tune the code extraction process. By writing an output again, we can obtain a resulting

file as the following one:

Figure 11: the output file we obtain by considering codes only

The first record that we considered earlier is transcoded to a much shorter form as follows:

T;99;ITC;Gen-2010;99;TOTAL;COF_PER_10;N;13,7

6. Finally, we can also include a csv header to the file but, in order to do so, we first need to label

each dimension correctly. We will accomplish this task later.

7. Although this is not visible from the example we shown, the software is also able to accept

cells containing the “NaN” string (meaning “not a number”) and consider it a numeric value

without giving errors.

8. In case your loader application can also load non-numeric values by design, it is finally possible

to make Excel2Csv jump the test that checks whether a read value is a number by ticking the

“Do not try to cast non-numbers” check box.

Loading and saving settings
The further we proceed through this guide, the more we will feel the need to save our settings to be

later restored, either to momentarily suspend our activity or to repeat similar actions on similar tables

in the future.

Doing this is quite straightforward in Excel2Csv: just either press the “Save” button to save all the

current settings to an Xml file or press the “Load” button to load the settings from a previously saved

file.

11

Figure 12: the location of the "Load" and "Save" buttons

Dimension settings: the field editor
So far, we have been skipping the parameter setup process specifically related to each dimension. We

are going to do this now by pressing the “Field editor” button. The following is the dialog window that

appears by doing so:

Figure 13: the field editor still containing no settings

Axis references
Each row in the editor shows a record field and is linked to a part of the table: the rows that show

“Column” as Type refer to the axes found in the table side (each one addressed by the “Label” field),

the ones with “Row” refer to the axes found in the header and finally we have the field dedicated to

the actual observation value.

So, the field marked with type “Column” and label “A” refers to the axis represented along the column

A of the table; the one marked with type “Row” and label “3” is linked to the axis located along the

row 3, and so on.

12

Field labels
The column “Field” is used to label each record field with a dimension code or the name of the

observation value field. When this feature is used in combination with the “Write CSV header” setting

(located on the main window), a meaningful header is added at the top of the output csv.

Suppose that we want to label each record field in the following way:

Figure 14: labelling the record field columns

and that we tick the “Write CSV header” option:

Figure 15: enabling the csv header

What we obtain is an output file beginning as follows:

Figure 16: output csv file containing a header

The header is now:

GENDER;EDUCATION_LEVEL;REF_AREA;TIME_PERIOD;OCCUPATIONAL_STATUS;AGE_CLASS;IND_TYPE;CORRECTION;OBS_VALUE

Implicit constant dimensions
At the time being, a cell under the “Type” column can have five possible values:

13

 Column

 Row

 Value

 Constant

 Attribute

being the last two special types reserved to dimensions with constant values that are not reported in

the table we want to extract and to cell attributes respectively.

Regarding the example above, suppose that we want to add other dimensions that the table author

excluded from the table simply because they have a constant value.

In this case, what we must do is press the “Add constant” button and a newly created field will appear

in the editor. We can assign a constant value to this dimension by filling its cell under the “Value”

column. Constants are the only fields that can have a “Value” assigned in our dialog window. Of course,

we can also label the dimension itself as we already did for the other ones.

So, let’s add a couple of constant dimensions more: “FREQ” with value “M” and “BASE_PER” with

value “2010”:

Figure 17: adding two constant dimensions

We will obtain an output file like the following:

Figure 18: the output file showing the newly created constant dimensions

14

In case we change our mind, or we just made a mistake, it is possible to remove a constant dimension

too by selecting the field to be deleted and pressing the “Remove constant” button.

Field ordering
Our output file is already fairly good. Nonetheless, suppose that the loader we want to use expects

our csv fields to be ordered differently because the cube in our data warehouse that we need to

populate, was built with the dimensions arranged in a different order. In this case we have no choice

but to reorder the csv columns to match the dimensions of the cube structure.

To do so, we can select each row representing a csv field, and then move it up and down by pressing

the “Move up” and “Move down” buttons respectively. This is a pretty straightforward operation.

So, let’s reorder the fields as follows:

Figure 19: reordering the output record fields

We will obviously have the following output:

Figure 20: output csv with rearranged fields

15

Time encoding: SDMX time mapping
In order to simplify the explanation and use a very small table, we chose to use a table that only shows

one possible value for the time series, being this “Gen-2010”. The latter can’t possibly be formatted

according to a standard SDMX time syntax, so we need to remap the time period dimension to get

valid values.

To do so, we first need to select our time series that we called “TIME_PERIOD” and then tell the

application that it’s a time dimension by ticking the box under the “Time series” column. This action

will enable the “Time coding” button whenever the same row is selected:

Figure 21: activating the "Time series" status for the TIME_PERIOD dimension

Let’s finally press the newly activated “Time coding” button to open a new dialog window:

Figure 22: the time editor window

Since our time string is not a valid Excel datetime value, we can leave the “Parse dimension as dates”

unselected. We will get back to this part later.

16

The “Gen-2010” string is supposed to represent a monthly value, being “Gen” the shortened form of

“Gennaio”, meaning January in Italian. Thus, in order to properly set up the mapping, we need to tick

the check box beside the “Monthly” row, at the left side of the window. This will show a grid of 2x12

cells and both the grid and the text boxes above it will be enabled to editing. Both the text boxes are

filled by default with the first value that the reader met while scanning the table axis, but it is possible

to edit such value.

What we need to tell the application next is what part of the shown value contains the information

about the year and what part identifies the period, which in this case must be a month. We can do so

by simply selecting these parts of text in the upper text boxes.

In our example, we will have to select “2010” in the first box and “Gen” in the second one, as shown

in the picture:

Figure 23: selecting the parts of text regarding the year and the period

Now that we have defined the portion of text specifying the period (month), we need to create a

correspondence between the period subtext and the SDMX period values, by using the lower grid.

In our example, we will have to fill the grid as follows:

17

Figure 24: defining a correspondence between the table codes and the SDMX period enumeration

Let’s confirm our settings by clicking OK on both the time and the field editor and let’s refresh our

output again. The resulting csv file will be as follows:

Figure 25: the output csv with a correctly mapped time series dimension

Whereas the file previously showed “Gen-2010”, now its fields show the “2010-01” string instead,

which is a correctly SDMX formatted value representing January 2010.

Time encoding: datetime data type casting
In our example we had a string representing a time reference in a non-standard fashion.

Now suppose that for some reason the author of the table wanted to use valid Excel datetime values

to express the time series. When I say datetime, I mean a valid Excel data type, not just a string

resembling it.

In this case, we need a way to read such values, ditch the time parts, take the year part and cast the

rest to valid SDMX periods, which can be monthly, quarterly, half-yearly or yearly.

This task can be accomplished via the time editor by ticking the “Parse dimensions as dates” check box

and specifying the period we want the month in the date to be casted to:

18

Figure 26: casting valid Excel datetime values to valid SDMX time references

So, if we had a datetime value in the form “02/10/2017 15:47” and we wanted to cast it to a monthly

series, we would have obtained the “2017-10” value. Had we have wanted to retrieve quarterly values,

we would have obtained “2017-Q4” instead, and so on.

Hiding dimensions: excluding row or column labels from the output
As you surely have noticed, in the field editor there are check boxes under the “hide” column for each

field. As it can be easily guessed, by selecting this option it is possible to hide the corresponding

dimension that the application detected while reading the file.

Please notice that this operation was added only to give the ability to hide rows/columns from our

header/side in case they don’t contain any useful information for a data csv, hence such rows/columns

must contain referential metadata or no meaningful information at all. Please do not try to use this

feature to simply suppress data corresponding to the hidden dimensions, for the application cannot

do an SQL-like “select distinct” operation on the variable combinations, since they might end up on

ceasing to reference data in an unambiguous fashion.

Customising the code extraction: The Expression Editor
Earlier we saw how to enable the code extraction feature in order to fetch only a variable code off a

whole cell content containing multiple information. The tuning we automatically chose was the

default one, which fetches codes off a “[Code] Description” type expression.

There are other two predefined expressions: the “Code: Description” and the “Code – Description”

ones, that are selectable from the combo box aside the code extraction check box.

19

Figure 27: list of the available code extraction expressions

To summarise, the parts of the predefined expressions that define the codes are obviously highlighted

as follows:

 [Code] Description

 Code: Description

 Code - Description

While these first three options might fulfil the needs of most users, they might not be enough. For this

reason, there is a fourth option, represented by the “Others…” label, that opens a whole new window

for the expression customisation.

Figure 28: The Expression Editor

By typing in either of the two text boxes, you edit both at the same time. In this way you can highlight

different portions of the same text. In fact, this is what we must do here: highlight the part of the text

dedicated to the code and the one dedicated to the description.

20

Let’s define some expression that is similar to the default one but that also allows us to see how this

window works. Be the chosen expression “[my code] my description”.

Figure 29: filling either text box edits the other one as well

What we need to do next is highlight the code part in the first text box and the description part in the

second one. Finally, we can also choose whether extra spaces as the sides of the single parts shall not

be considered in our expression.

Figure 30: selecting parts of the code and the description and enabling the white space trimming

That’s it, by clicking the Ok button a new entry is added to the combo box and is automatically

selected. This new setting works in a similar fashion to the default one.

21

Cell Attributes
Suppose you have a table like the following one:

Figure 31: A table containing cell attributes

As you can see, the cells in the table data area not only contain data but also codes that refer to the

OBS_STATUS and CONF_STATUS attributes.

While attributes might look like plain dimensions in a Csv track or a dataset schema, they don’t really

contribute to the determination of the data; on the contrary, they are determined together with data

according to the relationship:

𝐷𝑠(𝐷𝑖𝑚1, 𝐷𝑖𝑚2 , … , 𝐷𝑖𝑚𝑚) → (ℝ ∪ ∅, 𝐴𝑡𝑡𝑟1, … , 𝐴𝑡𝑡𝑟𝑛)

We need a way to retrieve these attributes from the table, do not let the application consider their

cells as data cells, and finally report them on the destination Csv as if they were dimensions.

Let’s first configure the application in the following way:

22

Figure 32: the configuration on the main data window

And the fields as:

Figure 33: the initial field configuration

What we need to do now, is tell the application what offset it can find an attribute at the right of a

data column. To do so, we just must click the “Add attribute” button: a new row will be inserted with

the default offset value set to 1.

Figure 34: the "Add attribute" button

Let’s call it OBS_STATUS. Let’s repeat the operation and call the new attribute CONF_STATUS. As you

can see, the new row is being initialized with an offset value set to 2.

23

Figure 35: the final configuration of the fields supporting attributes

That’s it, the application will jump the attribute columns while fetching data, and then it will gather

the attributes from the respective column offsets.

Figure 36: the expected results of adding attributes

Please also notice that an attribute can be hidden mainly to let the application have an idea of the

number of columns it has to jump while fetching data.

Finally, an attribute can be removed by clicking the “Remove attribute” button.

24

The extraction of constant values from worksheet’s cells
Starting from the version 1.3 the graphical user interface has been modified in order to provide a new

functionality: the export, in the csv output file, also of the constant values located into specific Excel

worksheet’s cells. This new function and the related updates of the graphical interface don’t interfer

with the other functionalities of the software and therefore what has been described so far and is

described in the following paragraphs continues to be valid.

After having opened a new data window, is possible to see that there’s a new “constant value area”

(inside the red rectangle) for configuring the the extraction of constant values from some specific excel

worksheet’s cells: this area is disabled by default

Figure 37: The new user interface with the ‘constant values’ area

In order to activate this area in necessary to flag the related checkbox, and to populate the fields that

indicate the section of the excel worksheet containing the constant value cells (Figure 39): 'First

Column', 'First Row', 'Maximum Column' and 'Maximum Row'.

25

Figure 388: Selecting the area that contains the constant values

Once configured the parameters for indicating the constant value cells area in the excel worksheet,

opening the Field Editor, is possible to visualize the insertion of constant value items whose type is

'Header’; for each ‘Header’ item is possible to edit only the ‘Field’ entry containing the item’s identifier

(Figure 40).

Figure 399: The constant values area on the spreadsheet

26

Figure 40: The ‘field editor’ where all constant values area have been inserted as ‘Header’

The code list extraction mode
Let’s get back to the table shown in figure 6: there are many axes there that contain both codes and

descriptions for the dimensions they refer to.

Suppose we now want to extract the code lists from a couple of axes, namely the axis on row 6 and

the one on column C. Let’s highlight those axes:

Figure 41: same table as the one in Figure 6 with the dimensions of our interest highlighted

The first aspect we notice is that the dimension on the header obviously extends horizontally, while

the other one does vertically. Hence, if we want to tell the application to extract either, we need to

tell it what the direction of the code list is.

The second aspect is that in the case of the dimension on the header, values get repeated over and

over. For this reason, we would need to identify the part of the text referring to the code and do some

kind of SQL-like distinct operation on such values.

27

To start a code list extraction session, we need to either click the “New dimension window” entry in

the File menu or the related button on the application bar. A new dimension window will be opened.

Figure 42: the code list extraction window

In case we want to extract the code list for the dimension in the header, we need to set up the main

interface as follows:

Figure 43: the basic settings for extracting the code list at the header

Now if we click the “Generate CSV” button, we should obtain a csv containing 16 records like the one

in the following picture. Notice the first row is empty because we included a header that still wasn’t

defined.

28

Figure 44: the initial output code list

The reason why we got so many repeated rows is that the application cannot be sure whether the list

it read really contains codes, hence it still cannot remove duplicate records. We’re going to do this

now.

Let’s click the “Field editor” button now. We should get only a column as follows:

Figure 45: the dimension editor as it appears in our example

Had we had several columns containing descriptions in many languages, we could have obviously

included them by modifying the table boundaries accordingly.

Figure 46: activating the Code list check box

Anyway, let’s give our column a name and let’s mark it as a code list by clicking the related check box

under the “Code list” column. Then let’s accept our settings and generate our Csv.

29

Notice that you can have only one field marked as a code list, although this is not evident in this

example. In general, checking such a box for a given field removes the same mark from all other fields.

Figure 40: the result after setting the column as a code list

Next step is to separate the codes and the descriptions in two distinct fields. The way we can

accomplish this task is very similar to what we already did on data. Since the expressions we have on

the sheet are already in the “[Code] description” format, we just need to click on the “Extract codes

from…” check box on the main window.

Figure 47: enabling the code and description extraction

Let’s click the “Generate CSV” button now and see what happens.

Figure 48: codes only

30

What we get as a result is a simple list of codes without descriptions. To insert the descriptions back

in the file, what we need to do is open the dimension editor again and click on “Add embedded”, so

that the embedded description can have its own separate Csv field. Let’s call this field “Description”

and move it at the bottom of the list.

Figure 49: adding an embedded description in its own field

Now we can accept the changes and newly generate the output csv, obtaining the expected result.

Figure 50: the complete output

The code list extraction mode obviously also lets you process several columns/rows so that you can

consider the latter as optional description fields, maybe intended to have multiple description, one

for each intended language.

Final observations
If we want to do some additional tuning for our output file to be, for instance, .Stat compatible, then

the default settings for both separators would most likely have to be overridden. However, the

software was written with the purpose to keep it as generic as possible. In case you notice the software

is not generic enough for your purposes, feature requests are most welcome.

Still about compatibility, please consider that if you must use the application on spreadsheets written

in right-to-left languages, then most likely you need to keep the table side axis at the rightmost side

of the sheet, for everything is flipped vertically. Also, considering that the output file would have to

contain strings written in opposite directions, the beginning and the end of RTL substrings would have

to be marked by special bytes, that flip the reading direction throughout the substring they delimit.

For this reason, a generic data loader might need to be adapted to ignore such bytes, if so needed.

